Name	- : ⁽¹⁾ D	ate Class		_	
CHAPTER	17.1				
28 VOCABULARY				9	
Introducti	on to Animals		*		
Use the terms from the list l	below to fill in the blanks	in the			
following passage.			3.59		
acoelomates	ectoderm	hydrostatic skeleton			
asymmetrical	endoderm	internal fertilization			
bilateral symmetry	endoskeleton	mesoderm	25		
blastula	exoskeleton	open circulatory system			
body plan	external fertilization	phylogenetic tree	• • •	· .	
cephalization	gastrovascular cavity	pseudocoelomates			
closed circulatory system	gills	radial symmetry		• •	
coelom	hermaphrodites	respiration			
coelomates	2				
			12	2.14	
In all animals except sponges, the zygote undergoes cell divisions that form				50 10	
a(n) (1)	, which eventually de	evelops into three distinct		•	
layers of cells- (2)	(3)	, and			
			1		
(4)	•				
All animals have their o	wn particular (5)			199.1	. (
, a	term used to describe an	animal's shape,		- 1 - E	served
symmetry, and internal org	anization. Sponges are (6))			hts re
					All rig
The first animals to evolve	in the ancient oceans had	(/)			ton
π	leaning the body parts are	arranged around a central	axis.		Wins
The bodies of all other anim	hals have distinct right and	d left halves. This is called			and
(8)		Most animals with this		· · · ·	chart
type of symmetry also hav	e evolved an anterior con	centration of sensory			t, Rin
					y Holl
structures and nerves—a p	rocess called (9)	······································			, de
Bilaterally symmetrica	l animals have different k	ands of internal body plans	2		Copyright O by Holt, Rinehart and Winston. All
depending on whether they cavity filled with fluid. An	y have a(n) (10) imals with no body cavity	are called		R 2	2.4.5
(11)					
		20			
located between the mesod have a body cavity located	lerm and the endoderm. (l entirely within the meso	13) derm. This means the gut			

and other internal organs are suspended within a fluid-filled coelom.

To visually represent the relationships among various groups of animals, scientists often use a type of branching diagram called a(n)

(14) ______, which shows how animals are related through evolution.

The digestive system enables animals to ingest and digest food. Simple

animals have a(n) (15) ______, which has only one opening. More complex animals have a digestive tract (gut) with a mouth and an anus.

The uptake of oxygen and the release of carbon dioxide are called

(16) ______ and can take place only across a wet surface, such as the damp skin of an earthworm. In general, land animals use lungs

and aquatic animals use (17) _____.

In complex animals, a system is needed to deliver oxygen and nutrients to the

cells. In a(n) (18) _____

______ the heart pumps a fluid into the body cavity and the fluid collects in open spaces in the animal's body and is returned to the heart. In a(n)

(19) _____

the heart pumps blood through a system of blood vessels. The blood remains in the blood vessels and materials pass into and out of the blood vessels through diffusion.

An animal's skeleton provides a framework that supports its body and helps

protect its soft parts. Earthworms have a(n) (20)

pressure in a coelom. Insects, clams, and crabs have a(n)

(21) _____, which is a hard, external skeleton that encases

the body of the animal. A(n).(22) ________ is composed of a hard material, such as bone, and is embedded within an animal.

In sexual reproduction, a new individual is formed by the union of a male and a female gamete. Many simple invertebrates, including slugs and earthworms, produce both types of gametes because they have both testes and ovaries.

Such animals are called (23) ______. Most aquatic animals release the male and female gametes near one another in the water, where

fertilization occurs. This method is called (24) ____

____. In (25) ______

the union of the sperm and egg occurs within the female's body.

1 . L.N.

1 991 1 13 S